اثرات سطوح مختلف پروبیوتیک و شکل فیزیکی خوراک بر ریخت شناسی روده باریک و وضعیت ایمنی ‏در جوجه‌های بلدرچین گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، واحد کاشمر، دانشگاه آزاد اسلامی، کاشمر، ایران

چکیده

این آزمایش باهدف استفاده از اثر سطوح مختلف پروبیوتیک پروتوکسین و شکل فیزیکی خوراک بر ریخت‌شناسی روده باریک و وضعیت ایمنی ‏در بلدرچین انجام گرفت. به این منظور تعداد‏ ‏240  قطعه جوجه بلدرچین‌های گوشتی یک روزه در یک آزمایش فاکتوریل و در قالب طرح کاملاً تصادفی ‏در 6 تیمار ، ‏‏٤ تکرار با 10 جوجه در هر تکرار به مدت 42 روز مورد بررسی قرار گرفتند. تیمارهای آزمایشی شامل: 1- خوراک آردی (مش) حاوی آب خالص (فاقد پروبیوتیک پروتکسین)، 2- خوراک آردی (مش) حاوی دو سطح پروبیوتیک پروتکسین محلول در آب آشامیدنی (1 و 2 درصد)، 33- خوراک کرامبل با سه سطح پروبیوتیک پروتکسین (صفر، 1 و 2 درصد) محلول در آب آشامیدنی بودند. جیره‌های آزمایشی بر اساس احتیاجات غذایی جوجه بلدرچین انجمن تحقیقات ‏ملی و با استفاده از نرم‌افزار ‏UFFDA‏ تنظیم شدند. به منظور آزمایش شمارش سلول‌های خونی،  در سن 42 روزگی، یک جوجه از هر تکرار انتخاب و نمونه خون از ورید بال گرفته شد. پس از ثبت وزن تمام جوجهها، یک پرنده از هر قطعه به صورت تصادفی کشتار شد و وزن و طول نسبی بخشهای مختلف روده و خصوصیات ریخت‌شناسی ژژنوم (‏طول و عرض پرز و عمق کریپت) مورد مطالعه قرار گرفت. ‏نتایج حاصل نشان داد. جوجههای تغذیه شده با جیره خوراک کرامبل و فاقد پروبیوتیک پروتکسین دارای بالاترین درصد لنفوسیت و جوجههای دریافت کننده خوراک مش و فاقد پروبیوتیک پروتکسین دارای بالاترین درصد مونوسیت بودند (0/05>P). هم چنین نتایج حاصل از ریخت‌شناسی روده باریک جوجه‌های بلدرچین نشان داد که دو تیمار خوراک کرامبل و حاوی 2 درصد پروبیوتیک پروتکسین محلول در آب آشامیدنی دارای بالاترین مقادیر طول پرز و عمق کریپت بودند (0/05>P). وزن نسبی اجزای مختلف دستگاه گوارش و طول نسبی دئودنوم و سکوم به‌طور معنیداری تحت تأثیر جیرههای آزمایشی قرار گرفتند (0/05>P). به‌طورکلی نتایج حاصل از آزمایش نشان داد که استفاده از افزودنی پروبیوتیک پروتکسین منجر به بهبود وضعیت ایمنی بلدرچینها می‌گردد و‏ تأثیر معنیداری بر بهبود  وضعیت طول و عرض پرز و عمق کریپت و نیز بهبود وزن و طول نسبی اجزای مختلف روده دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of different levels of probiotics and physical form of feed on small intestinal morphology and immune system in Japanese quail chicks

نویسندگان [English]

  • Nasir Sajjadi
  • Reza Vakili
Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar, Iran
چکیده [English]

An experiment was conducted to investigate the effect of different levels of probiotics and physical form of feed on the morphology of the small intestine and the immune system in Japanese quail. 240 one-day-old Japanese quail chicks were examined in a factorial experiment in a completely randomized design with 6 replications, 6 replications with 10 chicks per replication for 42 days. Experimental treatments include: Flour feed (mesh) containing pure water (no probiotic proxin), Flour feed (mesh) containing two levels of probiotic soluble protoxin in drinking water (1 and 2%), Crumble feed with three levels of probiotic proxin (0%, 1%) Were soluble in drinking water. Experimental diets were adjusted based on the nutritional needs of quail chicks of the National Research Association using UFFDA software. To test for blood cell count, at 42 days of age, one chick was selected from each replicate and a blood sample was taken from a wing vein. One bird was killed from each pen, and the relative weight and length of different parts of the intestine, the length and width of the villi, and the depth of the crypt were studied. Chickens fed crumble diet and lacking probiotic protexin had the highest percentage of lymphocytes and chickens fed mesh and lacking probiotic protexin had the highest percentage of monocytes (P<0.05). The results of intestinal morphology showed that two treatments of crumble and containing 2% probiotic soluble in drinking water had the highest values ​​of villi length and crypt depth (P<0.05). The relative weights of the various components of the gastrointestinal tract and the relative lengths of the duodenum and cecum were significantly affected by the experimental diets (P<0.05). The results of the experiment showed that the use of probiotic protexin improved the immune system of the Japanese quail and improved the length and width of the villi; The crypt depth as well as the weight and relative length of the various intestinal components were improved.

کلیدواژه‌ها [English]

  • Protexin probiotic
  • Immune status
  • Water science morphology
  • Quail
  1. Eckert, N., Lee, J., Hyatt, D., Stevens, S., Anderson, S., Anderson, P. and Caldwell, D., Influence of probiotic administration by feed or water on growth parameters of broilers reared on medicated and nonmedicated diets. Journal of Applied Poultry Research. 19(1): 59-67.
  2. Hasanzadeh, M., Tolouei, T., Nikbakht, G., Alkaragoly, H., Rezaei Far, A. and Ghahri, H., 2017. Efficacy of Echinacea purpurea and protexin on systemic and mucosal immune response to Newcastle diseases virus vaccination (VG/GA strain) in commercial turkey poults. Iranian Journal of Veterinary Medicine. 11(1): 85-95.
  3. Alagawany, M., Abd El-Hack, M.E., Farag, M., Sl Karthik, K. and Dhama, K., 2018. The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environmental Science and Pollution Research. 25(11): 10611-10618.
  4. Abd El‐Hack, M., Mahgoub, S., Alagawany, M. and Ashour, E., 2017. Improving productive performance and mitigating harmful emissions from laying hen excreta via feeding on graded levels of corn DDGS with or without Bacillus subtilis probiotic. Journal of animal physiology and animal nutrition. 101(5): 904-913.
  5. Kaur, S., 2015. Bacteria isolated from fermented food products. International Journal of Probiotics & Prebiotics. 10(1): 17.
  6. Hasani sorkhani, E., Afsharmanesh, M., Salarmoini, M., Ebrahimnejad, H. and Khajeh Bami, M., 2021. Evaluation of the effects of different levels of Pennyroyal essential oil and probiotic containing Bacillus coagulens on performance, carcass characteristics and meat quality of broiler chickens. Journal of Animal Environment. 13(1): 163-172. (In Persian)
  7. Abdel-Hafeez, H.M., Saleh, E.S., Tawfeek, S.S., Youssef, I. M. and Abdel-Daim, A.S., 2017. Effects of probiotic, prebiotic, and synbiotic with and without feed restriction on performance, hematological indices and carcass characteristics of broiler chickens. Asian-Australasian journal of animal sciences. 30(5): 672.
  8. Momenizadeh, Z., Maghsoudlou, Sh., Bayat Koohsar, J. and Ghanbari, F., 2020. Evaluation of probiotics and butyric acid glycerides through feed and drinking water on growth performance, carcass characteristics and gut microflora in broiler chickens. Journal of Animal Environment. 12(4): 231-244. (In Persian)
  9. Youssef, A.W., Hassan, H., Ali, H. and Mohamed, M., 2013. Effect of probiotics, prebiotics and organic acids on layer performance and egg quality. Asian J Poult Sci. 7(2): 65-74
  10. Soomro, R.N., Abd El‐Hack, M.E., Shah, S.S., Taha, A.E., Alagawany, M., Swelum, A.A. and El‐Edel, M.A., 2019. Impact of restricting feed and probiotic supplementation on growth performance, mortality and carcass traits of meat‐type quails. Animal science journal. 90(10): 1388-1395.
  11. Anjum, M., Khan, A., Azim, A. and Afzal, M., 2005. Effect of dietary supplementation of multi-strain probiotic on broiler growth performance. Pakistan Vet. 25(1): 25-29.
  12. Fernandes, B., Martins, M., Mendes, A., Milbradt, E., Sanfelice, C., Martins, B. and Bresne, C., 2014. Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. Brazilian Journal of Poultry Science. 16(4): 417-424.
  13. Garcia, V., Catala-Gregori, P., Hernandez, F., Megias, M. and Madrid, J., 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research. 16(4): 555-562.
  14. Kabir, S.L., Rahman, M., Rahman, M., Rahman, M. and Ahmed, S., 2004. The dynamics of probiotics on growth performance and immune response in broilers. International Journal of Poultry Science. 3(5): 361-364.
  15. Ahmad, I., 2006. Effect of probiotics on broilers performance. International Journal of Poultry Science. 5(6): 593-597.
  16. Haghighi, H.R., Gong, J., Gyles, C.L., Hayes, M.A., Sanei, B., Parvizi, P. and Sharif, S., 2005. Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Vaccine Immunology. 12(12): 1387-1392.
  17. Fuller, R., 1997. Probiotics 2: applications and practical aspects (Vol. 2): Springer Science & Business Media.
  18. Rolfe, R.D., 2000. The role of probiotic cultures in the control of gastrointestinal health. The Journal of nutrition. 130(2): 396S-402S.
  19. Strompfova, V., Marcinakova, M., Gancarcikova, S., Jonecova, Z., Scirankova, L., Guba, P. and Laukova, A., 2005.. New probiotic strain Lactobacillus fermentum AD1 and its effect in Japanese quail. Vet Med Czech. 50(9):
    415-420.
  20. Reshadi-Nejad, S., Tabeidian, S.A. and Toghyani, M., 2015. The effect of diet type (mash, pellets, extruded and crumble) on some immune responses broiler chicken. Paper presented at the Biological Forum.
  21. Dahlke, F., Ribeiro, A.M.L., Kessler, A.D.M., Lima, A.R. and Maiorka, A., 2003. Effects of corn particle size and physical form of the diet on the gastrointestinal structures of broiler chickens. Brazilian Journal of Poultry Science. 5(1): 61-67.
  22. Gunal, M., Yayli, G., Kaya, O., Karahan, N. and Sulak, O., 2006. The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. J. Poult. Sci. 5(2):149-155.
  23. Samanya, M. and Yamauchi, K.E., 2002. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis natto. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 133(1): 95-104.
  24. Santin, E., 2001. Testinal mucosa development of broiler chickens fed diets containing Saccharomyces cerevisiae cell wall. Journal of Applied Poultry Research. 10(3): 236-244.
  25. Smirnov, A., Perez, R., Amit-Romach, E., Sklan, D. and Uni, Z., 2005. Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. The Journal of Nutrition. 135(2): 187-192.
  26. Hogg, S., 2013. Essential microbiology: John Wiley & Sons.
  27. Christensen, H.R., Frøkiær, H. and Pestka, J.J., 2002. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. The Journal of Immunology. 168(1): 171-178.
  28. Taherpour, K. and Moravej, H., 2009. Uric acid glycerides on performance and serum composition in broiler chickens. African Journal of Biotechnology. 8(10).
  29. Rahimi, S. and Grimes, J., 2015. ultrastructure of small intestine in turkey poults. Poultry Science. 88(3): 491-503.
  30. Miles, R., Butcher, G., Henry, P. and Littell, R., 2006. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poultry Science. 85(3): 476-485.
  31. Chen, K.L., Kho, W.L., You, S.H., Yeh, R.H., Tang, S.W. and Hsieh, C.W., 2009. Effects of Bacillus subtilis natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poultry Science. 88(2): 309-315.
  32. Awad, W., Ghareeb, K., Abdel-Raheem, S. and Böhm, J., 2009. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science. 88(1): 49-56.