تعیین نرخ مرگ و میر، تغییرات رفتاری و آسیب شناسی ماهی کلمه خزری (Rutilus rutilus caspicus) در مواجهه با سولفات روی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه دانشگاه گنبدکاووس، گنبدکاووس، ایران

چکیده

 تحقیق حاضر به ­منظور تعیین نرخ مرگ و میر، تغییرات رفتاری و آسیب­ شناسی ماهی کلمه­ خزری (Rutilus rutilus caspicus) در مواجهه با سولفات­ روی در آزمایش مسمومیت 96 ساعته صورت گرفت. 200 قطعه بچه ماهی کلمه ­خزری با وزن متوسط 0/27±2/5 گرم جهت  انجام آزمایشات استفاده شد. برای تعیین تغییرات رفتاری و آسیب­ شناسی، 13 قطعه بچه­ ماهی کلمه در معرض غلظت ­هایی از فلز روی (0 ،10 ،30 ،50 ،70 ،80 ،90 میلی­ گرم در لیتر) قرار گرفتند. یک گروه به ­عنوان شاهد در نظر گرفته شد. از نمک سولفات­ روی به ­منظور منبع فلز روی استفاده شد. تانک ­های آزمایشی در مدت 24 ساعت هوادهی شدند تا میزان اکسِژن ­محلول درحد اشباع باقی بماند. درجه ­حرارت، پی ­اچ و اکسیژن­ محلول در طول آزمایش به وسیله دستگاه  چندپارامتره هک مدل 2000 اندازه­ گیری شدند. نمونه­  هایی از بافت آبشش، کلیه و کبد جمع ­آوری و مورد ارزیابی قرار گرفتند. مرگ و میر کامل در غلظت 90 میلی­ گرم در لیتر به ­دست آمد. مشاهدات ظاهری بچه ماهیان در مواجهه با روی شامل شنای عمودی و به سمت پایین، از دست دادن حالت تعادل، تشنجات عصبی و ماندن در ته تشت بود. در نهایت ماهیان با دهان و سرپوش باز مردند. در آبشش، متراکم شدن رگ ها، به هم جوش­ خوردگی لاملاهای ثانویه و هایپرتروفی سلول های­ پوششی دیده شد. در کلیه، تخریب مجاری­ کلیوی و کپسول­ بومن، گشادی مویرگ­ های گلومرول دیده شد. نتایج نشان داد که عمده تغییرات کبد به ­صورت تخریب سلول های کبدی و واکوئل­ های سیتوپلاسمی مشاهده شد. آزمایش نشان داد، روی سبب بروز علایم بالینی در آبشش، کلیه و کبد ماهی کلمه خزری شد. به هر حال آزمایش نشان داد که حضور روی در آب می     ­تواند سبب افزایش میزان مرگ و میر ماهیان در مواجهه با فلز روی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of mortality rate, behavioral and histopathological changes in of roach, Rutilus rutilus caspicus exposed to Zinc sulfate

نویسندگان [English]

  • Mohamad Farhangi
  • Hossein Adineh
  • Ziya Kordjazi
Department of Fisheries, Faculty of Agricultural Sciences and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
چکیده [English]

In this study aimed to determine behavioral and histopathological changes of Zinc in Roach (Rutilus rutilus caspicus) in acute toxicity tests for 96 h. The experiments were done by 200 Rutilus sp. fish with avrage weight 2.5±0.27g.To determinate behavioral and histopathological changes, 13 fish were distributed in groups of 0, 10, 30, 50, 70, 80 and 90 mg/l of Zinc. A group of fish was considered as control. Sulphate zinc salt was used as source of zinc. Thanks were aerated for 24 hours, so dissolved oxygen was maintained at range saturation by aeration. Test temperature, pH  value and dissolved oxygen were measured using portable multiparameter meter Hack (Model 2000).  Kidneys, livers, and gills were collected for evaluation. There was total mortality of 90 mg/l. Observations of behavioral response of  fish fingerlings expoused to zinc were such as vertical and downward swimming patterns, loss of equilibrium, convulsion, and spending more time at the bottom. Following this, the fish died with their mouth and operculum open. Gills presented vascular congestion, complete fusion of secondary lamellae, and epithelial cell hypertrophy. In the kidneys, changes such as Bowman’s capsule clearance, tubular degeneration, and glomerular capillary dilatation were common. Liver samples showed cytoplasmic vacuolization and cellular degeneration. Zinc induces a clinical condition of liver, gill and kidney damage in Roach. The results revealed, the use of Zinc in water can be harmful to increase fish mortality rate acute exposure to Zinc.  

کلیدواژه‌ها [English]

  • Zinc
  • Mortality
  • Histopathology
  • Rutilus rutilus caspicus
  1. Dekani, L. and Johari, S.A., 2015. The role of zinc element in aquatic nutrition. The fourth national conference of natural resources researches of Iran, focusing on fisheries and aquatic ecosystems, Kurdistan, Iran. (In Persian)
  2. Bagheri, H., Sharmad, T., KhairAbadi, V., Darvish Bastami, K. and Bagheri, Z., 2011. Tracing and Assessment of Heavy Metals in Gorganrud Sediments. Journal of Oceanography. 2(5) :35-39. (In Persian)
  3. Parizanganeh, A. and Lakhan, C., 2007. A Survey of Heavy Metal Concentrations in the Surface Sediments along the Iranian Coast of the Caspian Sea. 18(3): 2-12. (In Persian)
  4. Movafagh Behnam, M., Esmaili Sari, A. and Majedi, S.M., 2020. Accumulation of mercury and zinc in muscle tissue of four species of fishes in Caspian Sea (Case study: coastal of Mahmoud Abad-Noshahr). Journal of Animal Environment. 12(3): 183-189. (In Persian)
  5. Rajaei, Q., Hasanpour, M. and Mehdinejad, M.H., 2013. Heavy Metals Concentration (Zinc, Lead, Chrome and Cadmium) in Water and Sediments of Gorgan Gulf and Estuarine Gorganroud River, Iran. Journal of Health System Research. 8(5): 748-756. (In Persian)
  6. Bagheri, H. and Khairabadi, V., 2016. Assessment of seasonal changes in the concentration of heavy metals in the sediments of the Gorganrood River and their origin. Human and Environment Journal. 2(1): 45-55. (In Persian)
  7. Mohammadnejad Shamushki, M., Nezami, Sh., Esmaili-Sari, A., Khara H. and Pazhand, Z. 2013. Determination of the lethal concentration LC50 96h of lead, zinc and cadmium metals on sheep fry. Iranian Journal of Marine Sciences. 3(4): 44-53. (In Persian)
  8. Farhangi, M., 2012. Behavioral and pathophysiological studies of acute copper poisoning in the Caspian fish. Journal of Animal Environment. 5(1): 154-145. (In Persian)
  9. Soltani, Z., Ghorbani, R., Hedayati, S.A.A., Adeli, A. and Mazandarani, M., 2015. The comparison of sub lethal concentration effects of zinc sulfate and zinc nano-oxide on gill histopathological lesions of Capoeta capoeta gracilis (Keyserling, 1861). Journal of Applied Ichthyological Research. 2(4): 13-22. (In Persian)
  10. Sadeghi, P. and Kaslekha, N., 2016. Investigating the average lethal concentration of zinc chloride ZnCl2 and its behavioral effects in gray mullet (Mugil cephalus). Journal of Experimental Animal Biology. 6(2): 22-34. (In Persian)
  11. Lynch, N.R., Hoang, T.C. and O'Brien, T.E., 2016. Acute toxicity of binary‐metal mixtures of copper, zinc, and nickel to Pimephales promelas: Evidence of more‐than‐additive effect. Environmental Toxicology. 35(2): 446-457.
  12. Wong, M.H., Luk, K.C. and Choi, K.Y., 1977. The effects of zinc and copper salts on Cyprinus carpio and Ctenopharyngodon idellus. Acta Anatomica. 99: 450-454.
  13. Delahaut, V., Rašković, B., Salvado, M.S., Bervoets, L., Blust, R. and Boeck, G.D., 2020. Toxicity and bioaccumulation of Cadmium, Copper and Zinc in a direct comparison at equitoxic concentrations in common carp (Cyprinus carpio) PLoS One. 15(4). doi: 10.1371/journal.pone.0220485.
  14. Svecevičius, G., 2012. Acute Toxicity of Zinc to Common Freshwater Fishes of Lithuania. Acta Zoologica Lituanica. 9(2): 114-118.
  15. Farhangi, M., Hajimoradloo, A.M. and Rostami Charati, F., 2014. Determination of lethal concentration 50, 96h of Zinc (LC5096h, ZnSO4) on Common carp (Cyprinus carpio) under experimental condition. Journal of Animal Research. 27(1): 119-125. (In Persian)
  16. Naji, T., Safaiyan, Sh., Rostami, M. and Sabrjo, M., 2016. Investigating the effects of zinc sulfate on the gill tissue of common carp juveniles. Environmental Science and Technology. 9(2): 29-36. (In Persian)
  17. Li, X.F., Wang, P.F., Feng, C.L., LiU, D.Q., Chen, J.K. and Wu, F.C., 2019. Acute Toxicity and Hazardous Concentrations of Zinc to Native Freshwater Organisms Under Different pH Values in China. Bull Environmenal Contamination Toxicology. 103(1): 120-126.
  18.  TRC. 1984. OECD Guideline for testing of chemical, Section 2, Effects on biotic systems. OECD. 39 p.
  19. Ramírez-Duarte, W.F., Rondón-Barragán, I.S., Pedro, R. and Eslava-Mocha, P.R., 2008. Acute toxicity and histopathological alterations of Roundup herbicide on cachama blanca (Piaractus brachypomus). Pesquisa Veterinária Brasileira. 28(11): 1001-1007.
  20. Bernet, D., Schmidt, H., Meier, W., Burkhardt‐Holm, P. and Wahli, T., 1999. Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal Fish Disease. 22(1): 25-34.
  21. Roberts, R.J., 2012. Fish pathology. 4th edition. Wiley Blackwell, UK. 590 p.
  22. Adhikari, S., 2004. Interference of magnesium on zinc adsorption by pond sediment and on zinc accumulation in a freshwater teleost, Labeo Rohita (Hamilton). Ecotoxicology and environmental safety. 59: 228-231.
  23. Zeng, L., Huang, L., Zhao, M., Liu, Sh., He, Zh., Feng, J., Qin, Ch. and Yuan, D., 2018. Acute toxicity of zinc sulfate heptahydrate (ZnSO4.7H2O) and copper (II) sulfate pentahydrate (CuSO4.5H2O) on freshwater fish, Percocypris pingi. Fisheries and Aquaculture Journal. 9(1): 1-5.
  24. Taweel, A.; Shuhaimi, O. and Ahmad, A.K., 2013. In vivo Acute Toxicity Tests of Some Heavy Metals to Tilapia Fish (Oreochromis niloticus). Journal of Biological Sciences. 13: 365-371.
  25. Lushchak, V.I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol. 101: 13-30.
  26. Bielmyer, G.K., Bullington, J.B., Decarlo, C.A., Chalk, S.J. and Smith, K., 2012. The Effects of salinity on acute toxicity of Zinc to two euryhaline species of fish, Fundulus heteroclitus and Kryptolebias marmoratus. Integrative and Comparative Biology. 25(6): 753-760.
  27. Gervehi, H., Jamili, Sh. and Rostami, M., 2017. The effect of aluminum sulfate toxicity on the gill tissue of Kalema fish. Journal of research in livestock and aquatic affairs. 79: 193-198. (In Persian)
  28. Saedmochshi, S., Sudagar, M., Mazandarani, M.R. and Hosseini, S.S., 2014. Histopathological effects of nanoparticles on aquatic animals. Ornamental Aquatic Journal. 2(1): 25-30. (In Persian)
  29. Van, H., Vosloo, A. and Nikinmaa, M., 2004. Effects of short-term copper exposure on gill structure, methallothionein and hypoxia-inducible factor-1á (HIF-1á) levels in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology. 69: 271-280.
  30. Ghasemzadeh, J., Nourozi, Z., Sinaii, M., Kuhkan, A. and Shahabadi, H.A., 2015. Histopathology of the Liver and Gills of Grey Mullet (Mugil cephalus), Fed with Dietary Amino-acid cysteine under Exposure to Heavy Metals Cu and Zn. Journal of Marine Biology. 8(4): 21-34. (In Persian)
  31. Khosravi Katoli, Kh., Shabani, A., Kolangi Miandarreh, H. and Imanpour, M., 2017. The effect of sublethal concentrations of silver nanoparticles and silver nitrate on HSP70 gene expression and gill, liver and intestinal tissue damage in common carp. Journal of Animal Environment. 10(4): 339-350. (In Persian)
  32. Mok, W., Hatanaka, Y., Seoka, M., Itoh, T., Tsukamasa, Y. and Ando, M., 2014. Effects of additional cysteine in fish diet on mercury concentration. Food Chemistry. 147: 340 345.