تأثیر تغذیه با ناپلیوس آرتمیای استرس دیده و ریشه کاسنی (Cichorium intybus) بر شاخص های رشد و زیست‌سنجی گوپی (Poecilia reticulate)

نوع مقاله : فیزیولوژی (جانوری)

نویسندگان

1 گروه بیوتکنولوژی، پژوهشکده مطالعات دریاچه ارومیه، دانشگاه ارومیه، کد پستی: 5714944514

2 گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه، کد پستی: 5756151818

3 گروه سلولی و مولکولی، دانشکده زیست شناسی، دانشگاه تهران، صندوق پستی: 1417614418

4 گروه بیوفیزیک، مرکز تحقیقات بیوشیمی و بیوفیزیک، دانشگاه تهران، صندوق پستی: 1417614418

چکیده

  ناپلیوس آرتمیا نه‌تنها یک غذای مفید باارزش غذایی بالا برای دوران لاروی اغلب آبزیان می­باشد بلکه می­ تواند به­ عنوان حامل بسیاری از افزودنی­ ها نیز مطرح باشد. ایجاد استرس کنترل‌شده در ناپلیوس آرتمیا می­ تواند موجب تحریک و تولید پروتئین­ های شوک حرارتی (HSPs) شود که تغذیه با آن باعث رشد و بقاء بهتر موجود شود. در این تحقیق تأثیر تغذیهبا ناپلیوس آرتمیای بدون استرس و استرس ­دیده و ریشه کاسنی به ­عنوان یک ماده پری­بیوتیک در کنار غذای کنسانتره (تیمار شاهد) درمجموع 7 تیمار،بر شاخص ­های رشد و شاخص ­های زیست­ سنجی بچه ماهی­ گوپی (Poecilia reticulate)بررسی شد. تعداد 51 ماهی در هر تیمار با اندازه تقریباً یکسان، به ­صورت کاملاً تصادفی در ظروف 3 لیتری تیمار­بندی و به­ مدت 35 روز در 3 وعده به ­میزان 9% وزن بدن غذادهی شدند. در ابتدا و انتهای دوره غذادهی ماهی­ ها زیست ­سنجی شدند و نتایج آن­ ها با یکدیگر مقایسه گردید. نتایج تمامی شاخص ­های مورد مطالعه هم­ چون افزایش وزن، افزایش طول، ضریب رشد ویژه، ضریب چاقی و درصد افزایش وزن نشان داد که تغذیه با ناپلیوس آرتمیای استرس ­دیده تأثیر بهتری در اعلب فاکتورها داشته است. شاخص ­های ذکر شده به­ جز ضریب چاقی در تیمار­های تغذیه شده با ناپلی افزایش بیش ­تری داشتند (0/05>P). تیمارهای کاسنی و شاهد تغذیه‌شده با غذای کنسانتره نتوانستند رقابتی با دیگر تیمارهای تغذیه‌شده با غذای زنده داشته باشند (0/05<P).

کلیدواژه‌ها


عنوان مقاله [English]

Effects of dietary stressed Artemia nauplii and Chicory root (Cichorium intybus) on growth performance and biometric indices of Guppy (Poecilia reticulate)

نویسندگان [English]

  • Haleh Khalilpur 1
  • Ramin Manaffar 2
  • Vahid Afsharhezarkhani 1
  • Mehran Habibirezaei 3
  • Aliakbar Musavaimovahedi 4
1 Department of Biotechnology, Urmia Lake Research Institute, Urmia University. Zip code: 5714944514
2 Department of Fisheries, Faculty of Natural Resources, Urmia University. Zip code: 5756151818
3 Department of cellular and molecular, Faculty of science, Tehran university. Zip code: 1417614418
4 Department of biophysics, Institute of Biochemistry & Biophysics (IBB), University of Tehran. Zip code: 1417614418
چکیده [English]

Artemia is not only a useful food with high nutritional value for most of aquatic larval stage but can also carry many additives. Under the controlled stress stimulates Artemia can manufacture heat shock proteins (HSP) that can induce the growth and survival of existing better. In present work the effect of feeding with nauplii without stress and having stress, Chicory root as a kind of prebiotic compared to formulated feed (control treatment) in a total of 7 tretments, on the growth indices and biometric parameters of post larval stage of Guppy (Poecilia reticulate) were investigated. 51 fishes in each treatment with the almost same size, was randomized in a 3-liter containers and fed for 35 days on 9% body weight. In the early and at the end of experiment the fishes were analyezed and compared biometricaly. The results of the studied parameters such as weight gain, elongation, specific growth rate, condition factor and percent of the weight gain showed that feeding feeding with stressed Artemia nauplius had better effect with exception on condition factor  (P<0.05). The treatments fed with Chicory root and formulated food lost the competition with live foods treatments (P>0.05).

کلیدواژه‌ها [English]

  • Artemia
  • Chicory
  • growth
  • Guppy
  • HSP
  • Nauplius
  1. اکرمی، ر.؛ چیت ­ساز، ح.؛ دشتیان، ص. و رازقی­ منصور، م.، 1392. تأثیر پروبیوتیک اینولین و مانان الیگو­ساکارید به ­صورت مجزا و توام با عملکرد رشد، بازماندگی، ترکیب لاشه و مقاومت به استرس شوری در بچه ماهی سفید. فصلنامه علوم و فنون شیلات. دوره 2، شماره 3، صفحه 17.
  2. جعفری، گ.؛ مناف­فر، ر. و زارع، ص.، 1393. تأثیر تغذیه با مخمر تحریک‌شده حاوی پروتئین­ های شوک حرارتی HSPبر میزان رشد، بقاء و مقاومت در برابر استرس­ های محیطی در دو گونه Artemia urmiana و Artemia franciscana.. فصلنامه محیط زیست جانوری. سال 6،  شماره 4، صفحات 93 تا 101.
  3. خلیل ­پور، ه.، 1395. تأثیر تغذیه با  ناپلیوس آرتمیا حاوی پروتئین ­های شوک حرارتی بر ویژگی ­های رشد، بقاء و مقاومت نسبت به استرس ­های محیطی در ماهی گوپی. پایان­ نامه کارشناسی ­ارشد زیست فناوری دریا. دانشگاه ارومیه. 135 صفحه.
  4. Akbary, P.; Hosseini, S.A.; Imanpoor, M.; Sudagar, M.and Makhdomi, N.M., 2007. Comparison between live food and artificial diet on survival rate, growth and body chemical composition of Oncorhynchus mykiss larvae. Iranian Journal of Fisheries Sciences. Vol. 9, No. 1, pp: 19-32.
  5. Akrami, R.; Ghelichi, A. and Zarei, E., 2012. Effect of Dietary of supplementation prebiotic inulin on growth, survival, lactic acid bacteria loading and body composition of carp juvenile (Cyprinus carpio). Journal of Fisheries, Islamic Azad University Azadshahr Branch. Vol. 5, No. 4, pp: 87-94.
  6. Bagheri, T.; Hedayati, S.A.; Yavari, V.; Alizade, M. and Farzanfar, A., 2008. Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turkish Journal of Fisheries and Aquatic Sciences, Vol. 8, No. 1, pp: 43-48.
  7. Bengtson, D.A.; Leger, P. and Sorgeloos, P., 1991. Use of Artemiaas a food source for aquaculture. In: R.A. Broune; P. Sorgeloos and C.N.A. Trotman (eds.), Artemia biology. CRC Press, Boca Raton, FL., USA. pp: 255-280.
  8. Bouhnik, Y.; Pochart, P.; Marteau, P.; Arlet, G.; Goderei, I. and Rambaud, J.C., 1992. Fecal recovery in humans of viable Bifidobacterium sp. ingested in fermented milk. Gastroenterology. Vol. 102, pp: 875-878.
  9. Baruah, K.; Norouzitallab, P.; Shihao, L.; Sorgeloos, P. and Bossier, P., 2013. Feeding truncated heat shock protein 70s protect Artemia franciscana against virulent Vibrio campbellii challenge. Fish & shellfish immunology, Vol. 34, No. 1, pp. 183-191.
  10. Baruah, K.; Ranjan, J.; Sorgeloos, P. and Bossier, P., 2010. Efficacy of heterologous and homologous heat shock protein 70s as protective agents to Artemia franciscana challenged with Vibrio campbellii. Fish and shellfish immunology. Vol. 29, No. 5, pp: 733-739.
  11. Crittenden, R.G. and Tannock, G.W., 1999. Probiotics: A critical review. Horizon Scientific. Wynondhan. UK. pp: 141-156.
  12. FAO. 2014. Aquaculture Department. 2014. The state of world fisheries and aquaculture 2014. Food and Agriculture Organization of the United Nations, Rome. 243 P.
  13. Firouzbakhsh, F.; Noori, F.; Khalesi, M.K. and Jani Khalili, K., 2011. Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) fingerlings. Fish physiology and biochemistry. Vol. 37, No. 4, pp: 833-842.
  14. Franck, A.M.E., 2000. Inulin and oligofructose. LFRA Ingredient Handbook: Prebiotics and Probiotics. Leatherhead Publishing, Surrey. pp: 1-18.
  15. Gatesoupe, F.J., 1999. The use of probiotics in aquaculture. Aquaculture. Vol. 180, No. 1–2, pp: 147-165.
  16. Giri, S.S.; Sahoo, S.K.; Sahu, B.B.; Sahu, A.K.; Mohanty, S.N.; Mukhopadhyay, P.K. and Ayyappan, S., 2002. Larval survival and growth in Wallago attu (Bloch and Schneider): effects of light, photoperiod and feeding regimes. Aquaculture. Vol. 213, No.1, pp: 151-161.
  17. Gomez Gil, B.; Thompson, F.L.; Thompson, C.C. and Swings, J., 2003. Vibrio pacinii sp. nov., from cultured aquatic organisms. International journal of systematic and evolutionary microbiology. Vol. 53, No. 5, pp: 1569-1573.
  18. Grant, A.A.; Baker, D.; Higgs, D.A.; Brauner, C.J.; Richards, J.G.; Balfry, S.K. and Schulte, P.M., 2008. Effects of dietary canola oil level on growth, fatty acid composition and osmoregulatory ability of juvenile fall chinook salmon (Oncorhynchus tshawytscha). Aquaculture. Vol. 277, No. 3, pp: 303-312.
  19. Hajjej, G.; Hattour, A.; Hajjej, A.; Allaya, H.; Jarboui, A. and Bouain, A., 2011. Biometry, length-length and length-weight relationships of little tuna Euthynnus alletteratus in the Tunisian waters. Journal of fisheries and Aquatic Science. Vol. 6, No. 3, pp: 256.
  20. Hoseinifar, S.H.; Roosta, Z.; Hajimoradloo, A. and Vakili, F., 2015. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish & shellfish immunology. Vol. 42, No. 2, pp: 533-538.
  21. Huang, S.S.Y.; Fu, C.H.L.; Higgs, D.A.; Balfry, S.K.; Schulte, P.M. and Brauner, C.J., 2008. Effects of dietary canola oil level on growth performance, fatty acid composition and ionoregulatory development of spring chinook salmon, Oncorhynchus tshawytscha. Aquaculture. Vol. 274, No. 1, pp: 109-117.
  22. Hung, S.S.; Lutes, P.B.; Conte, F.S. and Storebakken, T., 1989. Growth and feed efficiency of white sturgeon (Acipenser transmontanus) sub-yearlings at different feeding rates. Aquaculture. Vol. 80, No. 1, pp: 147-153.
  23. Ibrahem, M.D.; Fathi, M.; Mesalhy, S. and El-Aty, A.A., 2010. Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology. Vol. 29, No. 2, pp: 241-246.
  24. Irianto, A. and Austin, B., 2002. Probiotics in aquacultureJournal of Fish Diseases. Vol. 25, No. 11, pp: 633-642. 
  25. Iwama, G.K.; Thomas, P.T.; Forsyth, R.B. and Vijayan, M.M., 1998. Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries. Vol. 8, No. 1, pp: 35-56.
  26. Kanazawa, A.; Teshima, S.I. and Ono, K., 1979. Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. Vol. 63, No. 3, pp: 295-298.
  27. Kedia, G.; Wang, R.; Patel, H. and Pandiella, S.S., 2007. Use of mixed cultures for the fermentation of cereal-based substrates with potential probiotic properties. Process Biochemistry, Vol. 42, No. 1, pp: 65-70.
  28. Kim, J.; Massee, K.C. and Hardy, R.W., 1996. Adult Artemia as food for first feeding coho salmon (Oncorhynchus kisutch). Aquaculture. Vol. 144, No. 1, pp: 217-226.
  29. Koueta, N.; Boucaud-Camou, E. and Noel, B., 2002. Effect of enriched natural diet on survival and growth of juvenile cuttlefish Sepia officinalis L. Aquaculture. Vol. 203, No. 3, pp: 293-310.
  30. Lavens, P. and Sorgeloos, P., 2000. The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture. Vol. 181, No. 3, pp: 397-403.
  31. Léger, P.; Bengtson, D.A.; Simpson, K.L. and Sorgeloos, P., 1986. The use and nutritional value of Artemia as a food source. Oceanography and Marine Biology: An Annual Review. Vol. 24. pp: 521-623.
  32. Lindquist, S. and Craig, E.A., 1988. The heat-shock proteins. Annual review of genetics. Vol. 22, No.1, pp: 631-677.
  33. Magurran, A.E., 2005. Evolutionary ecology: The Trinidadian guppy. Oxford University Press, Oxford, U.K. 24 P.
  34. Mahious, A.S. and Ollevier, F., 2005. Probiotics and prebiotics in aquaculture: review. In: 1st Regional workshop on techniques for enrichment of live food for use in larviculture AAARC, Urmia, Iran. pp: 17-26.
  35. Manaffar, R., 2012. Genetic diversity of Artemia populations in Lake Urmia, Iran. PhD thesis, Ghent University, Belgium. 160 P.
  36. Millamena, O.M., 1996. Training course on fish nutrition. Part: Lipids and Fatty Acids. pp: 1-19.
  37. Mira, S.M., 2011. Effect of dietary inulin as prebiotic on growth, survival and intestinal bacterial density of kutum (Rutilus frisii kutum) fry. Thesis for M.Sc. of Islamic Azad University, Qaemshahr Branch. P: 77.
  38. Olsen, R.E.; Myklebust, R.; Kryvi, H.; Mayhew, T.M. and Ringø, E., 2001. Damaging effect of dietary inulin on intestinal enterocytes in Arctic charr (Salvelinus alpinus L.). Aquaculture Research. Vol. 32, No. 11, pp: 931-934.
  39. Pochart, P.; Marteau, P.; Bouhnik, Y.; Goderel, I.; Bourlioux, P. and Rambaud, J.C., 1992. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. The American journal of clinical nutrition. Vol. 55, No. 1, pp: 78-80.
  40. Ringø, E. and Birkbeck, T.H., 1999. Intestinal microflora of fish larvae and fry. Aquaculture research. Vol. 30, No. 2, pp: 73-93.
  41. Ringø, E.; Sperstad, S.; Myklebust, R.; Refstie, S. and Krogdahl, Å., 2006. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture. Vol. 261, No. 3, pp: 829-841.
  42. Roberfroid, M., 1993. Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science & Nutrition. Vol. 33, No. 2, pp: 103-148.
  43. Roberfroid, M.B., 2005. Inulin type Fructans: Functional Food Ingredients. New York: CRC Press.
  44. Roozbehfar, R.; Jamali, H. and Hematian, R., 2012. The potential of Russian Sturgeon (Acipenser gueldenstaedtii) in exploitation of Artemia urmiana in comparison with Daphnia sp. and its mixture. World Appl. Sci. J. Vol. 20, No. 6, pp: 776-780.
  45. Roozbehfar, R.; Jamali, H.; Jafari, M. andHematian,R., 2013. A Comparative Study on the Growth Rate of Persian Sturgeon, Acipenserpersicus, Larvae Fed with Artemia urmiana and Daphnia sp. Global Veterinaria.Vol. 10, No. 2, pp: 116-120.
  46. Rottmann, R.W.; Francis Floyd, R.; Reed, P.A. and Durborow, R., 1992. Submitting a sample for fish kill investigation. SRAC Publication. No. 472, pp: 2.
  47. Sanders, B.M.; Nguyen, J.; Martin, L.S.; Howe, S.R. and Coventry, S., 1995. Induction and subcellular localization of two major stress proteins in response to copper in the fathead minnow Pimephales promelas. Comp. Biochem. Physiol. Vol. 112, No. 3, pp: 335-343.
  48. Sorgeloos, P.; Dhert, P. and Candreva, P., 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture. Vol. 200, No. 1, pp: 147-159.
  49. Soundarapandian, P. and Saravanakumar, G., 2009. Effect of Different Salinities on the Survival and Growth of Artemia Spp Current Research Journal of Biological Sciences. Vol. 1, No. 2, pp: 20-22.
  50. Verschuere,L.;Rombaut, G.; Sorgeloos, P. and Verstraete, W., 2000. Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbial Molecular Biology Reviews. Vol. 64, No. 4, pp: 655-671.
  51. Voragen, A.G., 1998. Technological aspects of functional food-related carbohydrates. Trends in Food Science and Technology. Vol. 9, No. 8, pp: 328-335.
  52. Wang, X.; Kim, K.W. and Bai, S.C., 2003. Comparison of L-ascorbyl-2-monophosphate-Ca with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish (Sebastes schlegeli). Aquaculture. Vol. 225, No. 1, pp: 387-395.
  53. Yousefian, M. and Sheikholeslami Amiri, M., 2009. A review of the use of prebiotic in aquaculture for fish and shrimp. African Journal of Biotechnology. Vol. 8, No. 25, pp: 7313-7318.